Fractional Itô–Doob Stochastic Differential Equations Driven by Countably Many Brownian Motions

نویسندگان

چکیده

This article is devoted to showing the existence and uniqueness (EU) of a solution with non-Lipschitz coefficients (NLC) fractional Itô-Doob stochastic differential equations driven by countably many Brownian motions (FIDSDECBMs) order ϰ∈(0,1) using Picard iteration technique (PIT) semimartingale local time (SLT).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic differential equations driven by fractional Brownian motions

2 Young’s integrals and stochastic differential equations driven by fractional Brownian motions 4 2.1 Young’s integral and basic estimates . . . . . . . . . . . . . . . . . . 4 2.2 Stochastic differential equations driven by a Hölder path . . . . . . . 7 2.3 Multidimensional extension . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Fractional calculus . . . . . . . . . . . . . . . . . . . ...

متن کامل

Reflected Backward Stochastic Differential Equations Driven by Countable Brownian Motions

In this note, we study one-dimensional reflected backward stochastic differential equations (RBSDEs) driven by Countable Brownian Motions with one continuous barrier and continuous generators. Via a comparison theorem, we provide the existence of minimal and maximal solutions to this kind of equations.

متن کامل

Upper Bounds for the Density of Solutions of Stochastic Differential Equations Driven by Fractional Brownian Motions

In this paper we study upper bounds for the density of solution of stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H > 1/3. We show that under some geometric conditions, in the regular case H > 1/2, the density of the solution satisfy the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough c...

متن کامل

Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion

We study the ergodic properties of finite-dimensional systems of SDEs driven by non-degenerate additive fractional Brownian motion with arbitrary Hurst parameter H ∈ (0, 1). A general framework is constructed to make precise the notions of “invariant measure” and “stationary state” for such a system. We then prove under rather weak dissipativity conditions that such an SDE possesses a unique st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2023

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract7040331